## Finding the axis of symmetry, vertex, and roots of a parabola

1) Find the <u>Axis of Symmetry</u> of  $y = x^2 - 4x + 3$  (The AOS is the vertical line that splits the parabola in 2 equal parts)

Axis of Symmetry  $\rightarrow x = \frac{-b}{2a}$ 

Axis of Symmetry: 
$$x = \frac{-b}{2a}$$
,  $x = \frac{-(-4)}{2(1)}$ ,  $x = \frac{4}{2}$ ,  $x = 2$   
[a is the coefficient of  $x^2$  (1)  
and b is the coef. of x (-4)]  
 $a = 1$   $b = -4$   
A.O.S.  $x = 2$ 

2) Find the vertex of  $y = x^2 + 4x + 3$  (The vertex is the turning point)

**Finding the vertex:** If the axis of symm. is an integer, then you can find the ordered pair for the vertex in the table. If not, we will use the calculator.

 $2^{nd}$  CALC 1 (for value) Type in the value for x (x= 2) and hit ENTER

The ordered pair for the vertex will appear on the bottom of the screen. (2,-1) Vertex: (2,-1)

## 3) Find the roots of $y = x^2 + 4x + 3$ (The roots are where the parabola crosses the x-axis)

**Finding the roots:** The roots are where the equation or y = 0. (Where it crosses the x-axis). This is why we put y = 0 into the calculator. The x-axis is y = 0.

#### There are usually 2 roots. To find the first:

 $2^{nd}$  CALC 5 (for intersect) ENTER ENTER ENTER The ordered pair will be at the bottom. (1,0)

**Root #1: (1, 0)** 

To find the  $2^{nd}$  root:

 $2^{nd}$  CALC 5 (for intersect) **DO NOT HIT ENTER!!!!!** You must move the cursor using the blue left and right arrows (not up and down) close to the  $2^{nd}$  root. Once close: ENTER ENTER ENTER The ordered pair will be at the bottom. (3,0)

**Root #2: (3,0)** 

1) Find the <u>Axis of Symmetry</u> of  $y = -3x^2 + x + 2$  (The AOS is the vertical line that splits the parabola in 2 equal parts)

# Axis of Symmetry $\rightarrow x = \frac{-b}{2a}$

| Axis of Symmetry: | x = -b. | x = -(1). | $x = \frac{-1}{-6}$ | A.O.S.= $x = \frac{1}{6}$ |
|-------------------|---------|-----------|---------------------|---------------------------|
|                   | 2a      | 2(-3)     | 0                   | · · · · ·                 |

[a is the coefficient of  $x^2$  (-3)and b is the coef. of x (1)]

2) Find the vertex of  $y = -3x^2 + x + 2$  (The vertex is the turning point)

**Finding the vertex**: If the axis of symm. is an integer, then you can find the ordered pair for the vertex in the table. If not, we will use the calculator.

 $2^{nd}$  CALC 1 (for value) Type in the value for  $x = (\frac{1}{6})$  and hit ENTER

The ordered pair for the vertex will appear on the bottom of the screen. (.1666666667, 2.08333333333)

**Vertex:**  $(\frac{1}{6}, \frac{25}{12})$ 

3) Find the roots of  $y = 3x^2 + x + 2$  (The roots are where the parabola crosses the x-axis)

#### Finding the roots:

The roots are where the equation or y = 0. (Where it crosses the x-axis). This is why we put y = 0 into the calculator. The x-axis is y = 0.

There are usually 2 roots. To find the first:  $2^{nd}$  CALC 5 (for intersect) ENTER ENTER ENTER The ordered pair will be at the bottom.

To find the 2<sup>nd</sup> root:

2<sup>nd</sup> CALC 5 (for intersect) DO NOT HIT ENTER!!!!!
 You must move the cursor using the blue left and right arrows (not up and down) close to the 2<sup>nd</sup> root. Once close: ENTER ENTER ENTER The ordered pair will be at the bottom.

**Root #2: (1,0)** 

**Root #1:**  $(\frac{-2}{3}, 0)$ 

For each parabola find the axis of symmetry, vertex, and roots: DO NOT ROUND!!

**1**) 
$$y = x^2 + 2x - 8$$
   
2)  $y = x^2 - 4x - 5$ 

| AOS: <u>x</u> =       | AOS:                   |
|-----------------------|------------------------|
| Vertex:               | Vertex:                |
| Roots: and            | Roots: and             |
| 3) $y = -x^2 + x - 6$ | 4) $y = -x^2 - 3x + 4$ |

| 4.05                            |        |
|---------------------------------|--------|
| AUS: $\underline{\mathbf{x}} =$ | AUS:   |
|                                 | Vertex |

Roots: \_\_\_\_\_ and \_\_\_\_\_

Roots: \_\_\_\_\_ and \_\_\_\_\_

# For 5-8: Round all answers to the nearest hundredth:

5)  $y = 3x^2 + 2x - 4$ 6)  $y = -2x^2 - 5x + 1$ 

| AOS: <u>x</u> =     | AOS:                                             |  |
|---------------------|--------------------------------------------------|--|
| Vertex:             | Vertex:                                          |  |
| Roots: and          | Roots: and                                       |  |
| 7) $y = -4x^2 + 5x$ | 8) $y = x^2 - 8$ (be careful what's b equal to?) |  |

| AOS: | x = |
|------|-----|
|      |     |

Vertex:

Roots: \_\_\_\_\_ and \_\_\_\_\_

AOS:

Vertex:

Roots: \_\_\_\_\_ and \_\_\_\_\_

## 1) a) Graph: $y = -x^2 - 2x + 8$

- b) Is the vertex a minimum or maximum?
- c) Find the axis of symmetry.
- d) Find the vertex.
- e) Find the roots.

- 2) a) Graph:  $y = 2x^2 + 2x 2$ b) Is the vertex a min. or max.?
  - c) Find the axis of symmetry.
  - d) Find the vertex.
  - e) Find the roots.





## 3) a) Graph: $y = x^2 - 3x - 6$

- b) Is the vertex a minimum or maximum?
- c) Find the axis of symmetry.
- d) Find the vertex.
- e) Find the roots.

- 4) a) Graph:  $y = -3x^2 + x + 2$ b) Is the vertex a min. or max.?
  - c) Find the axis of symmetry.
  - d) Find the vertex.
  - e) Find the roots.





## 5) a) Graph: $y = 2x^2 + 5x - 3$

- b) Is the vertex a minimum or maximum?
- c) Find the axis of symmetry.
- d) Find the vertex.
- e) Find the roots.

- 6) a) Graph:  $y = -3x^2 4x + 3$ b) Is the vertex a min. or max.?
  - c) Find the axis of symmetry.
  - d) Find the vertex.
  - e) Find the roots.





## 7) a) Graph: $y = -2x^2 + 5x$

- b) Is the vertex a minimum or maximum?
- c) Find the axis of symmetry.
- d) Find the vertex.
- e) Find the roots.

- 8) a) Graph:  $y = x^2 7x + 6$ b) Is the vertex a min. or max.?
  - c) Find the axis of symmetry.
  - d) Find the vertex.
  - e) Find the roots.





1) Solve the system graphically and check:  $y = -x^2 + 5x + 2$  y + 10 = 3(x + 3)



2) Solve the system graphically and check:

 $y = 2x^2 - 6x$ 20x + 5y = 20



3) Solve the system graphically and check:  $y = -x^2 - x + 6$  y = -3x + 3



4) Solve the system graphically and check:  $y = \frac{1}{2} x^2 - 3x + 3$  y = 2x + 1

